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The linear stability of the ‘ABC’ flows u = (A sinz+ C cosy, B sins+ A cosz, 
C sin y+  B cosx) is investigated numerically, in the presence of dissipation, for 
the cam where the perturbation has the same 2x-periodicity aa the basic flow. Above 
a critical Reynolds number, the flows are in general found to be unstable, with a 
growth time that becomes comparable to  the dynamical timescale of the flow as 
the Reynolds number becomes large. The fastest-growing disturbance field is 
spatially intermittent, and reaches its peak intensity in features which are localized 
within or at the edge of regions where the undisturbed flow is chaotic, as occurs in 
the corresponding MHD problem. 

1. Introduction 

velocity components are given by 
Recently there has been a spate of interest in the family of flows whose periodic 

(1.1) 

u = Asinz+Ccosy, 

v = B sinx+A cosz, 

w=Csiny+Bcosx,  

first introduced by Arnol’d (1965). These are Beltrami flows satisfying V A u = u, and 
the case with A = B = C was utilized by Childress (1970) in connection with the 
kinematic dynamo problem. They have thus been referred to as ‘ABC flows’ by 
Dombre et al. (1986), who conducted an extensive study into the dynamical properties 
of (1 .l). As well as being solutions to the Euler equations, these flows seemingly have 
the property that when ABC =k 0, there are regions within the flow domain where 
particle trajectories are chaotic (HBnon 1966) ; neighbouring fluid particles diverge 
exponentially with time, so that there is a positive Liapunov exponent. This makes 
the flows potentially interesting both as a model for certain aspects of turbulence 
(Dombre et al. 1986; Moffatt 1986) and as a possible candidate for a fast kinematic 
dynamo whose growth rate remains finite as the electrical conductivity of the fluid 
tends to infinity (Childress 1979; Zeldovich, Ruzmaikin & Sokolov 1983; Arnol’d & 
Korkina, 1983; Galloway & Frisch 1984, 1986; Moffatt & Proctor 1985). 

Any ABC flow may also be considered as a steady solution of the Navier-Stokes 
equation 

I 

a,u+u-vu = - V ~ + ~ U + J  vw = 0, (1.2) 
t Current address: Department of Applied Maths, University of Sydney, N.S.W. 2006, Australia. 
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where p and v respectively refer to the pressure and kinematic viscosity of the fluid, 
which is assumed without loss of generality to have unit density, and f is a driving 
force 

(1.3) 

without which the flow would decay (note e-'t(u, w, w) is an exact solution of the 
Navier-Stokes equation when f is zero). A t  low Reynolds number Re = v-l this 
steady solution is stable. It has been suggested by V. I. Arnol'd (private communi- 
cation) that when the Reynolds number is increased, such flows may very rapidly 
become unstable and turbulent (in an Eulerian sense) since even in their unperturbed 
state they possess pre-existing chaotic particle paths. The latter represent a kind of 
' Lagrangian turbulence ', even though the flow itself is completely non-turbulent 
according to the normal interpretation of the word. This argument originally 
motivated the introduction of the ABC flows. A necessary first step in investigating 
such questions is to study the linear instability of these flows. Here we describe the 
results of this exercise for the restricted case where the velocity perturbations have 
the same scale 1, as the basic flow, and we also describe some results for one or two 
of A, B,  or C zero, which are valid somewhat more generally. This complements the 
results of Moffatt (1986), who showed using variational principles that the Euler 
(inviscid) flows are unstable to perturbations with a scale 1 % 1,. 

The next section describes briefly the problem and the methods used to solve i t ;  
$3 gives the results of the computations, and $4 summarizes the conclusions. 

f = v(A sin z+C cosy, B sinz+ A cos z, C sin y +  B cosz), 

2. The problem and method of solution 
Let u be a perturbation with zero divergence to be added to the velocity u defined 

in (1.1). When this new total velocity is substituted into the Naviel-Stokes equation, 
the resulting problem can be linearized to give the following equation for the 
evolution of the velocity perturbation : 

wherep is the perturbed pressure and 1/Re is the viscosity in units based on the length 
of one side of the periodicity cube and the velocity amplitude of u (Re is thus a 
Reynolds number; for a consistent definition as A, B and C are varied, we normalize 
the values of A,  B and C so that A2+B2+C2 = 3). For comparison we write the 
electromagnetic induction equation describing the kinematic evolution of a magnetic 
field B subject to the action of the flow (1.1) in an electrically conducting fluid with 
scaled diffusivity Ri l  : 

1 
a,B+u*VB-B.Vu = -V2B. (2.2) 

Rm 

Equations (2.2) and (2.1) have some similarity, and (2.2) will henceforth be referred 
to as the corresponding magnetic problem; the analogy has been exploited in both 
directions by Moffatt (1985, 1986). The method developed for the magnetic case 
(Galloway & Frisch 1986) is easily extended to the hydrodynamic case. A Fourier 
representation is used for the velocity perturbation : 

t N  
v (x ,  y, z, t )  = E (vimn, wbm", vim") ei(lx+m~+nz ) *  (2.3) 

1 ,  m, n--iN+i 
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The pressure term in (2.1) can be eliminated with a projection operator; taking the 
divergence of (2.1) and expressing the result in Fourier space, 

kZplmn = - k$ kj(ut * ~j + V$ * u,)lmn, (2.4) 

where the superscripts refer to Fourier mode k = (Z,m,n), k = lkl, the suffices refer 
to Cartesian components, * means a convolution product, and the summation 
convention is used. Substituting for p in (2.1) we find 

where QiYn = (u, *v,+v,  *u,)lmn is the lmnth Fourier mode extracted from the 
convolution sum. This turns out to be the same for the magnetic problem except that 
in the latter (i) the projection operator (k ,  k,/k2 - dts) is replaced by - at#, and (ii) Sirn 
becomes (u, * v,-us * v,)lmn. Modes with k = 0 are somewhat unphysical as they 
imply a net momentum for the perturbation in some direction, but they can be 
included if desired by conserving their amplitude during the evolution. Except for 
these two changes, the numerical scheme is constructed as described in Galloway & 
Frisch (1986), and the convolution term again has the particularly convenient form 
that was exploited there. 

3. Results 
For this paper we only investigated a few values for A, B and C,  concentrating 

particularly on the case with A = B = C,  which is the one most discussed in the 
literature. This is apparently unstable at high enough Re. The problem (2.1) is linear 
and admits growing solutions with time-dependence est ; there is a discrete spectrum 
for the eigenvalues 8, and if the calculation is started from random initial conditions, 
that eigenmode with largest Re@) eventually predominates. In  figure 1 the depen- 
dence of this largest Re@) is shown as a function of Reynolds number. At high Re 
the growth rate seems to be asymptoting to a value around 0.216, comparable with 
the dynamical timescale, and short compared with the timescale Re for the diffusive 
decay of the unperturbed flow when not sustained by an imposed body force. Of 
course, we cannot be sure that this behaviour will persist at yet higher Re, but the 
numerical resolution available (up to 547 was felt insufficient to give reliable results 
beyond the values quoted here. (For the magnetic case we had access to a larger 
machine, and were able to resolve slightly more extreme cases.) The growing mode 
is oscillatory, with a period varying weakly from 21.6 at Re = 15 to 15.4 at Re = 200. 

As described in the magnetic paper (Galloway & Frisch 1986), information on the 
detailed structure of the eigenfunction is extremely difficult to plot effectively. In the 
present case the kinetic-energy density v8 is used as a diagnostic of the intensity of 
the eigenfunction (note that this is not the same as the perturbed kinetic-energy 
density, which contains in addition a term of lower order proportional to u* 0 ) .  Figure 
2 shows a stereoscopic plot of this quantity for Re = 250, and figure 3 illustrates 
contour levels for eight sections z = constant through the periodicity cube, for 
Re = 100. Superimposed on figure 3 are Poincart5 plots showing successive crossings 
of one fluid particle carried by the unperturbed flow as it intersects each section, the 
planes being identified modulo 2% as the particle leaves the periodicity cube (see 
Dombre et al. 1986 for a full description). The particle is chosen to be one whose 
trajectory traces out a chaotic region. It can be seen that as in the magnetic problem 
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FIGURE 2. Stereoscopic plot of the kinetic-energy density v3 of disturbance for Reynolds 
number 250. A = B = C.  

the intensity is related to the regions of chaos, and is concentrated in cigar-shaped 
features whose origin is probably due to advection and straining in the vicinity of 
stagnation points. In  the present problem, these features are somewhat more spread 
out; this is also apparent from the vorticity sApectra (not shown here), which peak 
at a wavenumber of order 1, compared with a current spectrum peak at order Rfm 
for the MHD problem. A similar difference in the intermittency of velocity fields and 
magnetic fields is also found in MHD turbulence simulations (Meneguzzi, Frisch & 
Pouquet 198 1 ) . 

We also examined the solution for possible symmetries associated with the group 
theoretical symmetries of the basic flow (see the discussion and references in Galloway 
& Frisch 1986). In the magnetic case, solutions both with and without symmetry 
breaking were found; in the present instance there is only one branch of growing 
solutions, and no evidence of any symmetry was found, even though in this respect 
the same possibilities exist for the two problems. 

Other values of A,  B and C have been tried, though it is hard to know on what 
basis to do this systematically. The flow has stagnation points if and only if A2, Bz 
and 0 can for m a  triangle (0<A2+B2, say ) .  Thus we t r iedA:B:C=2:1:1 (as 
explained in $2, A, B and C were normalized so that A2 + B2 + C2 = 3), to see whether 
a lack of stagnation points made any difference. The flow is still unstable, though 
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FIGURE 3. Poincar4 sections of particle trajectories crossing the planes z = m/4(r = 0, 1, . . .7). One 
particle only is tracked ; its successive intersections suffice to delineate a connected region where 
the flow is chaotic. Superimposed are contours of intensity of v1 in the same planes, normalized 
so that the maximum contour is derived over the whole cube. Note the clear relation between the 
strong v features and the chaos. (A = B = C = 1 ; the v-field is for Re = 100). 
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in this case at lower Re ( < 50) the most unstable mode has purely exponential growth, 
i.e. the eigenvalue is real. As Re is increased, this mode gives way to an oscillatory 
mode which grows faster; it is not possible to follow this mode for very long before 
running out of resolution, but at  least until then the growth rate is still increasing 
rapidly with Re. 

When one of A, B or C is zero the basic flow is integrable and there are no regions 
where streamlines are chaotic. As in the magnetic case, if say the parameter B 
associated with x-variability is set to zero, each perturbed mode of the form 
u = eizsut(y, z )  evolves independently and the time-dependence of ut can be followed 
with a two-dimensional code. Thus much higher Re can be attained. Shown on figure 
1 is the growth rate obtained using such a code for the case B = 0, A = C ,  1 = 2. This 
is not necessarily the most unstable 1, but it can be seen that the behaviour is 
qualitatively similar to the case A = B = C, with an oscillatory growing mode. In  
particular, the instability remains ‘fast’ as Re becomes large, as is often the case 
in hydrodynamic stability problems. In the magnetic case, if attention is similarly 
fixed on a given x-wavenumber 1, the growth rate falls off as a negative power of R,. 
However, Soward (1987) has studied this problem for the case where the wavelength 
is short compared with that of the undisturbed flow, and h d s  that the most unstable 
1 scales as &,, with a growth rate falling off very slowly as log (log R,)/log R,. 
Analogous results may exist for the problem investigated in this paper, though it is 
not clear what kind of correspondence should really be expected between the two 
cases. It would appear worthwhile to extend our numerical methods to include an 
arbitrary Floquet multiplier in order to treat scale separation more systematically 
and allow the wavenumber to vary continuously. 

When two of A, B and C are zero, our code yields stable solutions; in this form the 
problem is similar to one solved analytically by Meshalkin & Sinai (1961) and Green 
(1974), and in fact it can be shown that the linear stability properties are identical 
with those of the latter problem. (A demonstration of this is given in the Appendix.) 
In particular, there is only instability for perturbations with wavelengths longer than 
that of the basic flow. These are not included in our numerical solutions, and thus 
no instability is manifest in the results. 

The difference in the behaviour between the magnetic and stability problems in 
the integrable case shows, perhaps not surprisingly, that despite the similarity in form 
of the governing equations the nature of the solutions can be quite different. There 
are also similarities; in the case with A = B = C intense structures accumulate in the 
same location near stagnation points. As Moffatt (1985, 1986) has stressed, for zero 
diffusivity, although the equilibrium solutions in the two cases are analogous, the 
perturbation problems are different because in the former, the field lines are carried 
with the fluid, whereas in the latter the vorticity, which is the curl of the analogous 
variable, is the quantity convected. 

4. Conclusion 
We have seen that in almost all cases studied, the ABC flows are unstable to 

perturbations with the same periodicity as the basic flow, provided that a critical 
Reynolds number of the order of ten is exceeded. For small Reynolds number, these 
modes are stable, but a multiple-scale analysis, not given here, shows that a low Re 
there is still instability provided that perturbations with wavelength much greater 
than the scale of the basic flow are included. The same holds for the case where two 
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of A, B or C vanish (see the Appendix); in this case modes with the same scale as 
the basic flow are stable for all finite Re, but longer-wavelength modes become 
unstable for Re > 4 2 .  Moffatt (1986) has investigated the strictly inviscid case, and 
has shown using variational methods that for general A,B,C there are always 
unstable modes with a scale much larger than the scale of the basic flow; for these 
modes he finds a growth time proportional to k-g, where k is the (small) wavenumber 
of the perturbation. It seems likely that since for high enough Re the modes found 
numerically in this paper evolve on the turnover timescale, they are in fact more 
unstable than those treated by Moffatt. I n  any case, the often-met conjecture that 
Beltrami flows are particularly stable structures is not supported by the results for 
this family of flows. 

For the future, it will be interesting to find the nature of the bifurcated solutions 
of the Naviedtokes equations (2.2) once the basic ABC flow has become unstable; 
it will then be possible to test Arnol’d’s conjecture that the underlying chaotic 
nature of the basic flows renders them liable to an extremely rapid development of 
Eulerian turbulence. The methods used in this paper cannot handle this problem 
because of their restriction to one wavenumber for the unperturbed flow ; however, 
using a different scheme (e.g. a pseudospectral method), the solution should be 
straightforward. 

This work was initiated at the suggestion of S. Childress. We are very grateful to 
him, V. I. Arnol’d, M. HBnon, H. K. Moffatt and A. M. Soward for correspondence, 
suggestions and discussions. The stereo plotting routines were kindly provided by 
W. Arter, and the computations were performed on the CRAY-1 machines of the 
Centre de Calcul Vectoriel pour la Recherche (Palaiseau) and of the Rechenzentrum 
Garching. 

Appendix. The case where two of A,  B, C vanish 
Meshalkin & Sinai (1961) and Green (1974) both studied the stability of the 

two-dimensional ‘Kolmogorov ’ flow u = (0, sinx). They found that it is stable for 
any finite Reynolds number against perturbations with the same 2x-periodicity in 
x and y as the baaic flow. Above a critical value of d 2  for the Reynolds number 
the flow is unstable against perturbations of very long wavelength. We shall 
now show that the linear stability problem for three-dimensional flows such as 
u = (0, sinx, cosx), obtained by putting two of A, B or C zero in ( l . l ) ,  is essentially 
the same. 

First, let us consider perturbations depending only on x and y. We denote by 
uH = (0, sinx) and trH = (wz, vv) the projections of the basic flow and the perturbation 
on the (x, y)-plane, and by u, = cosx and v, their z-components. Let VH be the 
(2, y)-gradient operator. The basic stability equation (2.1) can now be split into the 
pair 

a , u H + u H * v , a H + a H * v H u H  = - v H p + V v ’ u H ,  v.0, = 0, (A 1) 

(A 2) 
We observe that (A 1) is precisely the equation governing the two-dimensional 
perturbations of the Kolmogorov flow. The z-component wz satisfies an advection 
equation with a source term ; hence it cannot produce additional instabilities beyond 
those of the Kolmogorov flow. 

~ , ~ , + ~ H * V H W , - W ,  sinx = vV~W,. 
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suppose that the y, z part of this dependence is proportional to ei(mg+nz). We set 

D. Galloway and U .  Frisch 

Next, we consider perturbations with an arbitrary z-, y -  and’z-dependence, and 

and rotate the coordinate system by an angle 0 around the x-axis, so that 
the new Y-axis is in the former (O,m,n)-direction. The basic flow is now 
(0, sin (x+ e), COB (z+ 0)) and the perturbation is only Y-dependent. A change of phase 
is irrelevant for the stability of the Kolmogorov flow ; thus we are back to the former 
case, which concludes the proof. 

Finally, we mention that the stability of the helical flow (0, cos (z /L) ,  -sin (x /L)) ,  
obviously equivalent to the case here studied, was investigated recently by Bayly 
& Yakhot (1986). Our derivation is more compact in so far as the problem is reduced 
to the one already investigated by Meshalkin & Sinai (1961). On the other hand, Bayly 
& Yakhot’s field-theoretical method gives a rather direct derivation of the critical 
value 4 2 .  
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